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Presentation Outline 

• Origin of the conventional Moving Particle Semi-implicit (MPS) 
particle method. 

• Limitations of MPS method. 
• The proposed Moving Particle Pressure Mesh (MPPM) scheme. 
• A new density interpolation scheme based on level-set function. 
• Test cases: single- and multi-phase flow. 
• Conclusion & on-going works 
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The origin of MPS 

• Moving Particle Semi-implicit (MPS) scheme  mesh-free Lagrangian method to simulate incompressible 
flow using a semi-implicit technique.  

• Main Ref: Koshizuka, S., Nobe, A. and Oka, Y. (1998), “Numerical analysis of breaking waves using the moving 
particle semi-implicit method”, International Journal for Numerical Methods in Fluids, Vol. 26, pp. 751-769. 

• E.g. Wave-breaking 
 (Gotoh and Sakai 2006): 
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Multiphase flow (Chen et al. 2011) 



The origin of MPS 

• Similar to SPH, MPS uses particle interaction models to predict the 
differential operators:  

• ∇ (p) 
• ∇2(u), ∇2(v), ∇2(w). No derivative of kernel function is involved in MPS. 

 
• E.g.:  
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Basic MPS  
algorithm 

 
Flow chart taken from  

Kondo & Koshizuka (2011) 
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Limitations of MPS 1: Source term of Pressure 
Poisson Equation 
• In MPS, the initial particle density is represented by n0, in which n  

must be kept constant (incompressibility) when the solution 
progresses via solving the Poisson equation of pressure. 
 
 

• Problems:  
• The source term is wiggly across the flow field. 
• Spurious oscillations of pressure is commonly found although the volume of 

fluid particle can be preserved well n n+1 ~ n 0 . 
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Limitations of MPS 1: Source term of Pressure 
Poisson Equation 
• Hydrostatic problem taken from Kondo and Koshizuka (2011) 
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Limitations of MPS 1: Source term of Pressure 
Poisson Equation 
• Proposals: 

• A hybrid source term is proposed by using the velocity divergence: (Tanaka 
and Masunaga 2010, Lee et al. 2011, Natsui et al. 2014) 

• The hybrid scheme is used to ensure the smoothness of pressure field while 
retaining the volume of each fluid particle. 
 
 
 

• However, parameter tuning of γ must be performed. 
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Limitations of MPS 2: Pressure gradient 

• Tsuruta et al. (2013) claimed that the existing MPS schemes tend to 
over-predict the inter-particle attractive forces (causing clumping of 
particles) 

• To solve this problem , an artificial repulsive force term is normally 
incorporated in the MPS pressure gradient model: 

• Minimum pressure model (widely used) 
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Actual MPS gradient 
model 



Limitations of MPS 2: Pressure gradient 

• CMPS method (Khayyer and Gotoh 2008): 

 
 
 
 

• It is important to note that artificial repulsive force term is not 
physical by nature. 
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Actual MPS gradient model 

Artificial repulsive force 



Limitations of MPS 3: Collision model 

• At high Reynolds number (particularly free-surface flow), inter-
penetration between particles occurs and it tends to de-stabilize the 
computation. 

• In most of the MPS codes, a collision model (similar to X-SPH) is 
employed to modify the particle velocity (Shakibaeinia and Jin 2012; 
Natsui et al. 2014) 
 
 

• Again, the velocity is subjected to tuning of parameter ε and dp. 
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A proposal of particle method for 
incompressible flow 
• A particle method should be free of rigorous tuning parameter. 
• The pressure field should be smooth. 
• The pressure gradient force should be in its original form and involve 

no artificial treatments. 
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A proposal: Moving Particle Pressure Mesh 
(MPPM) method 
• Firstly proposed by Hwang (2011). 
• His ideas: 

• The moving particle strategy (Lagrangian particles) in MPS should be retained 
-- > numerical issues due to convective discretization. 

• Dissociation of PRESSURE variable from moving particles  treated as 
Eulerian variable instead. 

• Coz. no explicit evolution equation for PRESSURE for incompressible moving particles. 
• The mesh used for neighbouring-searching can be equally deployed for storing pressure. 

• Moving particles are merely acting as interpolating points to realize the 
related operators in the Poisson equation. 
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MPPM approach 

• Step 1: Evolution of moving particles to obtain the intermediate 
particle velocities 
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MPPM approach 

• Step 2: Form the Poisson equation of pressure on Eulerian pressure 
mesh 
 
 
 
 

• For single phase flow, the coefficients in the PPE are fixed  computationally 
cheaper than the original MPS. 
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MPPM approach 

• Face velocities can be interpolated from the neighbouring moving particles using 
Shepard’s method or Moving Least-Square (MLS) techniques. 
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MPPM approach 

• Step 3: From the new pressure field, correct the particle velocities 
and positions. 
 
 

• The pressure gradient force acting on moving particles is determined via the 
simple shape function: 
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MPPM results (single phase) 

• Lid-driven flow (Re = 1000)- Taken from Hwang (2011) 
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MPPM results (single phase) 

• Lid-driven flow at various Re and mesh spacing - Taken from Hwang 
(2011) 
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MPPM results (single phase) 

• Backward facing step  
 (Re = 100) 
- Taken from Hwang (2011) 
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Extension to Multiphase 
Flow 
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Extension of MPPM to handle multiphase 
flows 
• The success of multiphase flow in particle method  a proper 

interfacial density interpolation scheme for interfacial fluid particle. 
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Extension of MPPM to handle multiphase 
flows 
• Some commonly used density interpolation scheme employ simple 

averaging (Khayyer and Gotoh 2013): 
• Shepard interpolation**: 

 
 
 

• Taylor series  
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** We never succeed in simulating fluid with density ratio > 10. 



Extension of MPPM to handle multiphase 
flows 
• Intrusion of particles into different fluid region: 

• Degrade the accuracy of the interfacial density calculation. 

• E.g.: RTI case (density ratio 1:3) 
• Taken from Shakibaeinia and Jin (2012) 
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Extension of MPPM to handle multiphase 
flows – A Proposal 
• To secure a smooth fluid interface, we propose to determine the 

interfacial particle fluid density via a level-set function : 
• Good accuracy on surface normal/curvature calculation. 

• Again, the level-set function is solved in the background pressure 
mesh. 

• We employ the conservative level-set method by Olsson and Greiss 
(2005) for good mass conservation. 
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CLS-MPPM Method 

From the divergence-free velocity field obtained from MPPM,  
• Step 1: Advance the level set function in time via a 3rd order TVD-RK 

method (Jiang and Peng 2000). Spatial terms are approximated by an 
upwind scheme with SuperBee limiter. 

 

4/29/2019 26 



CLS-MPPM Method 

• Step 2: Reinitialize the MESH level-set function using the artificial 
compression. 
 
 

• µ to control  the thickness of interface (~3 cell width if µ = h/2) 
• Ensure uniform interface thickness as time progresses. 

• Accurate interfacial particle density. 
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Outcome of Level-Set reinitialization 

• RTI problem  
• Density ratio 1:1.8 

 
• Contour lines of  
Level-Set = 0.05,  
0.5, 0.95 are 
plotted on  
background mesh 
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CLS-MPPM Method 

• Step 3: Interpolate the PARTICLE level-set from the MESH level-set 
using bi-linear interpolation. 
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CLS-MPPM Method 

• In MPPM, moving particles are merely deployed for velocity interpolation 
purpose, they can be simply deleted if they reside in the wrong regime. 
 
 
 
 
 
 
 
 

• Thus, the smoothness of the fluid interface can be retained via the smooth level 
set function. 
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Test Cases 
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Multiphase Flow using CLS-MPPM(1) 

• Hydrostatic problem subjected to varying gravitational field 
 

• ρ1 = 1.0 kg/m3 

• ρ2 = 50.0 kg/m3 
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Hydrostatic – varying gravity 
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Pressure field at t = (a) 0.07s; (b) 0.08s and (c) 0.09s for a static multi-fluid 
problem subjected to external acceleration. 
 



Hydrostatic – varying gravity 
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Multiphase Flow using CLS-MPPM(2) 

• Equilibrium Bubble 
• ρ1 = 500.0 kg/m3 

• ρ2 = 1000.0 kg/m3 

• σ = 0.02361 N/m 
• R = 0.02m 
• g = 0 m/s2, inviscid. 
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Grid convergence test 
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Multiphase Flow using CLS-MPPM(3) 

• Oscillating Bubble 
• Droplet  

• fluid: Ethanol (surrounded by blue  
Particles with small dens and visc.) 

• side length = 7.5cm (n=4 sides) 
• σ = 0.02361 N/m 
• g = 0 m/s2 

• Theoretical period of oscillation: 
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• Change of fluid interface 

4/29/2019 39 



Multiphase Flow using CLS-MPPM 
(4) 
• Droplet Splash 

• ρwater = 999.2kg/m3 

• ρair = 1.225kg/m3 

• µwater = 1.1377 x 10-3 Pa.s 

• µ air = 1.77625 x 10-5 Pa.s 
 

• Symmetric BC is imposed. 
• Domain: 3.5mm x 14mm 
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t= 0s t= 0.0098s t= 0.01485s t= 0.01995s 

Interfaces predicted by 32x128 (upper) and 64x256 (lower) pressure mesh. • : VOF solutions from 
Puckett et al. (1999) on 32x128 grid 



Droplet Splash (Mass conservation) 
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Multiphase Flow  
using CLS-MPPM (5) 

• Rising bubble  
 (Re = 1000; B = 200) 

• ρH = 1000.0 kg/m3 

• ρL = 1.0 kg/m3 

• µH = 3.91511 x 10-4 Pa.s 

• µ L = 3.91511 x 10-6 Pa.s 
• σ = 3.0656 x 10-4 N/m 
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Rising bubble (Re = 1000; B = 200) 

• Rising bubble 
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T* = 2.8 T* = 3.2 T* = 3.6 

T* = 4.0 T* = 4.4 T* = 4.8 

• Level-set solutions (140x140) from Sussmann et al. (1994) 



Rising Bubble (Re = 1000; B = 200) 
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T* = 5.2 T* = 5.6 T* = 6.0 

• Level-set solutions from Sussmann et al. (1994) 



Rising Bubble(Mass conservation) 
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Multiphase Flow using  
CLS-MPPM (6) 
• KH Instability 
• Density Ratio 1:2 
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• Mode change from 1/6 to ½ by a factor ~3 (comply with theory) 
• Growth is delayed in SPH. 

 



 

4/29/2019 50 

Static pressure distribution 



Conclusion 

• Improvements have been made to the existing MPS-based particle 
method: 

• A relatively smooth pressure field can be secured. 
• Particles are subjected to “actual” pressure gradient without artificial 

repulsive force. 
• No collision model is employed. 

• A level-set method is used for interfacial density evaluation. 
• Smooth fluid interface can be secured. 
• More accurate surface normal and curvature can be attained. 
• Enable multiphase flow computation with high density ratio. 
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ON-GOING WORKS 

• An accurate and consistent Laplacian model for scattered distribution 
of moving particles. 

• Higher-order time integration scheme for moving particles. 
• Better mass conservation  VOF + Level set 
• 3D extension and parallelization. 
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